Skip to content
/ Mtrx Public

A simple Array-like matrix calculation JavaScript library.

License

Notifications You must be signed in to change notification settings

zhufuge/Mtrx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

41 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mtrx

Mtrx is a Array-like matrix calculation library.

default class Mtrx is extends Array.

Installation

$ npm install mtrx

Properties

  • Mtrx.rows
  • Mtrx.cols
  • Mtrx.rank
  • Mtrx.det

Methods

  • Mtrx.zeros()
  • Mtrx.ones()
  • Mtrx.eye()
  • Mtrx.rand()
  • Mtrx.like()
  • Mtrx.diag()
  • Mtrx.clone()
  • Mtrx.isMtrx()
  • Mtrx.isMtrxLike()
  • Mtrx.isDiag()
  • Mtrx.isSingular()
  • Mtrx.isSameShape()
  • Mtrx.equal()
  • Mtrx.equalAll()
  • Mtrx.equalAny()
  • Mtrx.prototype.get()
  • Mtrx.prototype.set()
  • Mtrx.prototype.changeRows()
  • Mtrx.prototype.changeCols()
  • Mtrx.prototype.resetLike()
  • Mtrx.prototype.cof()
  • Mtrx.prototype.T()
  • Mtrx.prototype.compan()
  • Mtrx.prototype.inv()
  • Mtrx.prototype.LUP()
  • Mtrx.prototype.mapMtrx()
  • Mtrx.prototype.everyMtrx()
  • Mtrx.prototype.someMtrx()
  • Mtrx.prototype.reduceMtrx()
  • Mtrx.prototype.rightMul()
  • Mtrx.prototype.leftMul()
  • Mtrx.prototype.rightDiv()
  • Mtrx.prototype.leftDiv()

Usage

const Mtrx = require('mtrx');

creation

It is really easy to create a matrix object what you want.

// No arguments, create a 1x1 random(0 ~ 1) matrix
new Mtrx()
// -> Mtrx [ [ 0.7173410249746024 ] ]

new Mtrx(2)
// -> Mtrx [
//  [ 0.9028933497295337, 0.18980748816858917 ],
//  [ 0.10859200880292263, 0.560035422729191 ] ]

new Mtrx(2, 3)
// -> Mtrx [
//  [ 0.6974184450003136, 0.6402339494410889, 0.4553998131618524 ],
//  [ 0.38759912033793165, 0.8904429716538196, 0.7449091649551736 ] ]

new Mtrx(3, 4, 9)
// -> Mtrx [ [ 9, 9, 9, 9 ], [ 9, 9, 9, 9 ], [ 9, 9, 9, 9 ] ]

// Get numbers array, create a diag matrix
new Mtrx([2, 4, 6])
// -> Mtrx [ [ 2, 0, 0 ], [ 0, 4, 0 ], [ 0, 0, 6 ] ]

// Get a 2-order numbers array, create a matrix like the array
new Mtrx([[1, 2, 3], [4, 5, 6]])
// -> Mtrx [ [ 1, 2, 3 ], [ 4, 5, 6 ] ]

// Get a function expression, create a matrix by the expression
new Mtrx(2, 3, (i, j) => i + j)
// -> Mtrx [ [ 0, 1, 2 ], [ 1, 2, 3 ] ]

operation

Mtrx object is a Array-like object. So, you can operat it just like to operat a 2-order Array.

const m = new Mtrx(2, 3, 0)
// -> Mtrx [ [ 0, 0, 0 ], [ 0, 0, 0 ] ]

m[1][1]     // or     m.get(1, 1)
// -> 0

m[0][1] = 1     //or     m.set(0, 1, 1)
// -> Mtrx [ [ 0, 1, 0 ], [ 0, 0, 0 ] ]

properties

const m = new Mtrx(2, 3, (i, j) => (i === j) ? 1 : 0)
// -> Mtrx [ [ 1, 0, 0 ], [ 0, 1, 0 ] ]
const n = new Mtrx([
  [1, 2, 0],
  [3, 4, 4],
  [5, 6, 3]
])

m.rows  // -> 2
m.cols  // -> 3

n.det  // -> 10
m.det  // -> NaN
// If the Mtrx object's rows and cols was not equal, det would be NaN

m.rank  // -> 2     
m[0][0] = 0
// -> Mtrx [ [ 0, 0, 0 ], [ 0, 1, 0 ] ]
m.rank  // -> 1

static function

all the static functions is Immutable.

Mtrx.zeros(3, 3)
// -> Mtrx [ [ 0, 0, 0 ], [ 0, 0, 0 ], [ 0, 0, 0 ] ]

Mtrx.ones(3, 4)
// -> Mtrx [ [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ], [ 1, 1, 1, 1 ] ]

Mtrx.eye(3)
// -> Mtrx [ [ 1, 0, 0 ], [ 0, 1, 0 ], [ 0, 0, 1] ]

Mtrx.diag([2, 4, 6])
// -> Mtrx [ [ 2, 0, 0 ], [ 0, 4, 0 ], [ 0, 0, 6 ] ]

const n = [[0, 1, 2], [1, 2, 3]]
const m = new Mtrx(n)
// -> Mtrx [ [ 0, 1, 2 ], [ 1, 2, 3 ] ]

Mtrx.isMtrx(n)     // -> false
Mtrx.isMtrx(m)     // -> true

Mtrx.isMtrxLike(n)     // -> true
Mtrx.isDiag(m)     // -> false
Mtrx.isSameShape(m, n)     // -> true

const m = new Mtrx([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
const n = new Mtrx([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Mtrx.add(m, n)
// -> Mtrx [ [ 2, 2, 3 ], [ 4, 6, 6 ], [ 7, 8, 10 ] ]

Mtrx.mul(m, 3)
// -> Mtrx [ [ 3, 0, 0 ], [ 0, 3, 0 ], [ 0, 0, 3 ] ]

Mtrx.mul(m, n)
// -> Mtrx [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]

Mtrx.div(n, m)
// -> Mtrx [ [ 1, 2, 3 ], [ 4, 5, 6 ], [ 7, 8, 9 ] ]

methods

Following functions will always return a new Mtrx object.

const m = new Mtrx([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
const n = new Mtrx([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

m.add(n)   // like Mtrx.add(m, n)

m.leftMul(n)   // like Mtrx.mul(m, n)
m.rightMul(n)   // like Mtrx.mul(n, m)

n.cof(1, 1)
// -> Mtrx [ [ 1, 3 ], [ 7, 9 ] ]

// a powerful function
m.mapMtrx((i, j, n) => i + j + n);
// -> Mtrx [ [ 1, 1, 2 ], [ 1, 3, 3 ], [ 2, 3, 5 ] ]

const m = new Mtrx(2, 3, (i, j) => (i === j) ? 1 : 0)
// -> Mtrx [ [ 1, 0, 0 ], [ 0, 1, 0 ] ]
const n = new Mtrx([
  [1, 2, 0],
  [3, 4, 4],
  [5, 6, 3]
])

n.T()

n.LUP()
// -> { L: Mtrx [ [ 1, 0, 0 ], [ 0.2, 1, 0 ], [ 0.6, 0.5, 1 ] ],
//      U: Mtrx [ [ 5, 6, 3 ], [ 0, 0.8, -0.6 ], [ 0, 0, 2.5 ] ],
//      P: Mtrx [ [ 0, 0, 1 ], [ 1, 0, 0 ], [ 0, 1, 0 ] ] }
n.LUP().L
// -> Mtrx [ [ 1, 0, 0 ], [ 0.2, 1, 0 ], [ 0.6, 0.5, 1 ] ]

n.inv()
// -> Mtrx [ [ -1.2, -0.6, 0.8 ], [ 1.1, 0.3, -0.4 ], [ -0.2, 0.4, -0.2 ] ]

// If there is no corresponding matrix, you would get a Error.
m.LUP()
m.inv()
m.compan()
// -> Error: ...