Skip to content

A Tensorflow implementation of Deeplabv3+ trained on VOC2012.

Notifications You must be signed in to change notification settings

zhulf0804/Deeplabv3plus-Tensorflow

Repository files navigation

About

A Tensorflow implementation of Deeplabv3plus, trained on VOC2012 data set.

Difference from the paper Deeplabv3plus

  • training strategy

    We use small batch_size = 8, and don't train the BN layer.

  • atrous convolution

    We don't employ atrous convolution in the resnet model.

Set up

Prepare dataset

  • Config the path in the input_data.py

The VOCdevkit directory should be as follows:

|--VOCdevkit
        |--train.txt         (10582 lines)
        |--val.txt           (1449 lines)
        |--test.txt          (1456 lines)
        |--train_raw.txt     (1464 lines)
        |--trainval_raw.txt  (2913 lines)
        |--VOC2012
            |--JPEGImages            (33260 images)
            |--SegmentationClass
            |--SegmentationClassAug  (12031 images)
            |--SegmentationObject
            |--ImageSets
            |--Annotations

Prepare pretrained resnet-101 model

  • Config the path in the deeplab_model.py

The resnet_v2_101_2017_04_14 directory should be as follows:

|--resnet_v2_101_2017_04_14
               |--eval.graph
               |--resnet_v2_101.ckpt
               |-train.graph

resnet_v2_101.ckpt is needed. Download the directory(pretrained model) from http://download.tensorflow.org/models/resnet_v2_101_2017_04_14.tar.gz

Dependent libraries

  • Tensorflow 1.11 and Python 2.7(3.7) have been tested.
  • Anaconda
  • Opencv

Inference

  • download checkpoint from here

  • randomly select images

    python predict.py

  • select one image

    python predict.py --prediction_on_which val --filename 2007_002400

Evaluation

  • download checkpoint from here

python evaluate.py

  • for val data, generate prediction results and get mIoU.
  • for test data, generate prediction results.

Re-Train to reproduce the result

  • rm -r checkpint
  • rm -r summary

python train.py

Results

on val set

Repo(%) Paper(%)
75.84 79.35
sheep horse tv/monitor bicycle aeroplane cow dining table bus potted plant background dog cat person train bottle car chair sofa bird boat motorbike
0.85 0.84 0.67 0.41 0.88 0.86 0.56 0.92 0.59 0.94 0.86 0.9 0.84 0.88 0.78 0.82 0.41 0.54 0.88 0.66 0.83

predicted images

Note: left image is raw image, right image is the predicted image.

learning rate

loss

Reference

About

A Tensorflow implementation of Deeplabv3+ trained on VOC2012.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages