-
Notifications
You must be signed in to change notification settings - Fork 10
/
main.py
149 lines (105 loc) · 5.25 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import importlib
from logging import debug
import numpy as np
import torch
import pytorch_lightning as pl
import lit_models
import yaml
import time
from transformers import AutoConfig
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# In order to ensure reproducible experiments, we must set random seeds.
def _import_class(module_and_class_name: str) -> type:
"""Import class from a module, e.g. 'text_recognizer.models.MLP'"""
module_name, class_name = module_and_class_name.rsplit(".", 1)
module = importlib.import_module(module_name)
class_ = getattr(module, class_name)
return class_
def _setup_parser():
"""Set up Python's ArgumentParser with data, model, trainer, and other arguments."""
parser = argparse.ArgumentParser(add_help=False)
# Add Trainer specific arguments, such as --max_epochs, --gpus, --precision
trainer_parser = pl.Trainer.add_argparse_args(parser)
trainer_parser._action_groups[1].title = "Trainer Args" # pylint: disable=protected-access
parser = argparse.ArgumentParser(add_help=False, parents=[trainer_parser])
# Basic arguments
parser.add_argument("--wandb", action="store_true", default=False)
parser.add_argument("--litmodel_class", type=str, default="TransformerLitModel")
parser.add_argument("--seed", type=int, default=7)
parser.add_argument("--data_class", type=str, default="KGC")
parser.add_argument("--chunk", type=str, default="")
parser.add_argument("--model_class", type=str, default="RobertaUseLabelWord")
parser.add_argument("--checkpoint", type=str, default=None)
'''
edit by bizhen
'''
parser.add_argument("--max_triplet", type=int, default=8)
# Get the data and model classes, so that we can add their specific arguments
temp_args, _ = parser.parse_known_args()
data_class = _import_class(f"data.{temp_args.data_class}")
model_class = _import_class(f"models.{temp_args.model_class}")
lit_model_class = _import_class(f"lit_models.{temp_args.litmodel_class}")
# Get data, model, and LitModel specific arguments
data_group = parser.add_argument_group("Data Args")
data_class.add_to_argparse(data_group)
model_group = parser.add_argument_group("Model Args")
if hasattr(model_class, "add_to_argparse"):
model_class.add_to_argparse(model_group)
lit_model_group = parser.add_argument_group("LitModel Args")
lit_model_class.add_to_argparse(lit_model_group)
parser.add_argument("--help", "-h", action="help")
return parser
def _saved_pretrain(lit_model, tokenizer, path):
lit_model.model.save_pretrained(path)
tokenizer.save_pretrained(path)
def main():
parser = _setup_parser()
args = parser.parse_args()
np.random.seed(args.seed)
torch.manual_seed(args.seed)
pl.seed_everything(args.seed)
data_class = _import_class(f"data.{args.data_class}")
model_class = _import_class(f"models.{args.model_class}")
litmodel_class = _import_class(f"lit_models.{args.litmodel_class}")
print(f'\n \t Data_class: data.{args.data_class}')
print(f'\n \t Model_class: models.{args.model_class}')
print(f'\n \t Litmodel_class: lit_models.{args.litmodel_class}')
config = AutoConfig.from_pretrained(args.model_name_or_path)
# update parameters
config.label_smoothing = args.label_smoothing
model = model_class.from_pretrained(args.model_name_or_path, config=config)
data = data_class(args, model)
tokenizer = data.tokenizer
lit_model = litmodel_class(args=args, model=model, tokenizer=tokenizer, data_config=data.get_config())
if args.checkpoint:
lit_model.load_state_dict(torch.load(args.checkpoint, map_location="cpu")["state_dict"])
logger = pl.loggers.TensorBoardLogger("training/logs")
if args.wandb:
logger = pl.loggers.WandbLogger(project="kgc_bert", name=args.data_dir.split("/")[-1])
logger.log_hyperparams(vars(args))
metric_name = "Eval/mrr" if not args.pretrain else "Eval/hits1"
early_callback = pl.callbacks.EarlyStopping(monitor="Eval/mrr", mode="max", patience=10)
model_checkpoint = pl.callbacks.ModelCheckpoint(monitor=metric_name, mode="max",
filename=args.data_dir.split("/")[-1] + '/{epoch}-{Eval/hits10:.2f}-{Eval/hits1:.2f}' if not args.pretrain else args.data_dir.split("/")[-1] + '/{epoch}-{step}-{Eval/hits10:.2f}',
dirpath="output_pretrained" if args.pretrain else "output",
save_weights_only=True,
every_n_train_steps=100 if args.pretrain else None,
save_top_k=5 if args.pretrain else 1
)
callbacks = [early_callback, model_checkpoint]
# args.weights_summary = "full" # Print full summary of the model
trainer = pl.Trainer.from_argparse_args(args, callbacks=callbacks, logger=logger, default_root_dir="training/logs")
if "EntityEmbedding" not in lit_model.__class__.__name__:
trainer.fit(lit_model, datamodule=data)
path = model_checkpoint.best_model_path
lit_model.load_state_dict(torch.load(path)["state_dict"])
result = trainer.test(lit_model, datamodule=data)
print(result)
# _saved_pretrain(lit_model, tokenizer, path)
if "EntityEmbedding" not in lit_model.__class__.__name__:
print("*path"*30)
print(path)
if __name__ == "__main__":
main()