Releases: zjykzj/YOLOv2
Releases · zjykzj/YOLOv2
Integrate yolov5, refactor YOLOv2/YOLOv2-Fast and YOLOv2Loss
- Fully integrated with
YOLOv5 v7.0
, including training, evaluation, and prediction; - Referring to model and loss function implementation, we have reimplemented
YOLOv2/YOLOv2-Fast
andYOLOv2Loss
; - We trained the corresponding classification model based on the
YOLOv2
configuration file. Please refer to the specific results indocs/
Update ultralytics/yolov5 Transforms
- update ultralytics/yolov5(485da42) transforms, add Mosaic/Perspective and so on.
- Train using the
VOC07+12 trainval
dataset and test using theVOC2007 Test
dataset with an input size of416x416
. give the result as follows
Original (darknet) | tztztztztz/yolov2.pytorch | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | |
---|---|---|---|---|---|
ARCH | YOLOv2 | YOLOv2 | YOLOv2+Darknet53 | YOLOv2 | YOLOv2-tiny |
VOC AP[IoU=0.50] | 76.8 | 72.7 | 74.95/76.33(v0.2.1) | 73.27 | 65.44 |
- Train using the
COCO train2017
dataset and test using theCOCO val2017
dataset with an input size of416x416
. give the result as follows (Note: The results of the original paper were evaluated on theCOCO test-dev2015
dataset)
Original (darknet) | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | |
---|---|---|---|
ARCH | YOLOv2 | YOLOv2+Darknet53 | YOLOv2 |
COCO AP[IoU=0.50:0.95] | 21.6 | 25.86 | 22.84 |
COCO AP[IoU=0.50] | 44.0 | 48.40 | 43.95 |
From the training results, it can be seen that the pretraining configuration of yolov5 can effectively improve the performance of yolov2. However, it can also be observed that the improvement is not very high, and the performance of YOLOv2+Darknet53 is not as good as the previous results. This indicates that there are different optimal training configurations for different network architectures.
Refactor Data Module
- Refactor data module;
- Fix demo.py;
- Update latest training results.
- Train using the
VOC07+12 trainval
dataset and test using theVOC2007 Test
dataset with an input size of448x448
. give the result as follows
Original (darknet) | tztztztztz/yolov2.pytorch | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | |
---|---|---|---|---|---|
ARCH | YOLOv2 | YOLOv2 | YOLOv2+Darknet53 | YOLOv2 | YOLOv2-tiny |
VOC AP[IoU=0.50] | 76.8 | 72.7 | 76.33 | 72.00 | 64.36 |
- Train using the
COCO train2017
dataset and test using theCOCO val2017
dataset with an input size of416x416
. give the result as follows (Note: The results of the original paper were evaluated on theCOCO test-dev2015
dataset)
Original (darknet) | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | |
---|---|---|---|
ARCH | YOLOv2 | YOLOv2+Darknet53 | YOLOv2 |
COCO AP[IoU=0.50:0.95] | 21.6 | 24.98 | 22.01 |
COCO AP[IoU=0.50] | 44.0 | 46.85 | 42.70 |
UPGRADE
- Reconstructed loss function implementation, consistent with the original paper implementation. 2bd6bae
- Add darknet53 network as a backbone. 2c772aa
- Fix cocoevaluator. abd5760
- Train using the
VOC07+12 trainval
dataset and test using theVOC2007 Test
dataset with an input size of416x416
. give the result as follows
Original (darknet) | tztztztztz/yolov2.pytorch | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | |
---|---|---|---|---|---|
ARCH | YOLOv2 | YOLOv2 | YOLOv2+Darknet53 | YOLOv2 | YOLOv2-tiny |
VOC AP[IoU=0.50] | 76.8 | 72.7 | 76.27 | 71.65 | 64.19 |
- Train using the
COCO train2017
dataset and test using theCOCO val2017
dataset with an input size of416x416
. give the result as follows (Note: The results of the original paper were evaluated on theCOCO test-dev2015
dataset)
Original (darknet) | tztztztztz/yolov2.pytorch | zjykzj/YOLOv2(This) | |
---|---|---|---|
ARCH | YOLOv2 | YOLOv2+Darknet53 | YOLOv2 |
COCO AP[IoU=0.50:0.95] | 21.6 | 25.33 | 21.96 |
COCO AP[IoU=0.50] | 44.0 | 47.24 | 42.65 |
UPDATE
- Increase YOLOv2 training results for COCO dataset
- Update VOC dataset results for YOLOv2 and YOLOv2-tiny
- IGNORE_THRESH: 0.5/0.7 search #400b0f8
- YOLOv2 loss function search #129ba72e
- Comparing YOLOv2 Training of Darknet 224x224 and 448x448 pretrained Models #e4b7399
Original (darknet) | tztztztztz/yolov2.pytorch | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | |
---|---|---|---|---|
arch | YOLOv2 | YOLOv2 | YOLOv2 | YOLOv2-tiny |
train | VOC07+12 trainval | VOC07+12 trainval | VOC07+12 trainval | VOC07+12 trainval |
val | VOC2007 Test | VOC2007 Test | VOC2007 Test | VOC2007 Test |
VOC AP[IoU=0.50] | 76.8 | 72.7 | 70.39 | 63.96 |
conf_thre | / | 0.005 | 0.005 | 0.005 |
nms_thre | / | 0.45 | 0.45 | 0.45 |
input_size | 416 | 416 | 416 | 416 |
v0.1.1
- Fix target transform error
label2yolobox
. #029f796 - Add multi-GPUs training and update
yolov2_voc.cfg
andyolov2-tiny_voc.cfg
training results. #6632949 - Integrated COCO dataset and evaluator. #5b19877 #e1ba3ba
Original (darknet) | tztztztztz/yolov2.pytorch | zjykzj/YOLOv2(This) | zjykzj/YOLOv2(This) | |
---|---|---|---|---|
arch | YOLOv2 | YOLOv2 | YOLOv2 | YOLOv2-tiny |
train | VOC07+12 trainval | VOC07+12 trainval | VOC07+12 trainval | VOC07+12 trainval |
val | VOC2007 Test | VOC2007 Test | VOC2007 Test | VOC2007 Test |
VOC AP[IoU=0.50] | 76.8 | 72.7 | 70.39 | 63.77 |
conf_thre | / | 0.005 | 0.005 | 0.005 |
nms_thre | / | 0.45 | 0.45 | 0.45 |
input_size | 416 | 416 | 416 | 416 |
v0.1.0
- Realized the YOLOv2 network and YOLOv2 loss function definition;
- Implemented complete training/evaluation and prediction code;
- Darknet19 and FastDarknet19 use ImageNet for pretraining, with an input size of 224x224;
- Train using voc07+12 training data, evaluate based on voc2007 test.
Original (darknet) | tztztztztz/yolov2.pytorch | zjykzj/YOLOv2(This) | |
---|---|---|---|
train | VOC2007+2012 trainval | VOC2007+2012 trainval | VOC2007+2012 trainval |
val | VOC2007 test | VOC2007 test | VOC2007 test |
VOC AP[IoU=0.50], inference | 76.8 | 72.7 | 69.69 |
conf_thre | / | 0.005 | 0.005 |
nms_thre | / | 0.45 | 0.45 |
input_size | 416 | 416 | 416 |