-
Notifications
You must be signed in to change notification settings - Fork 95
/
Copy pathimage.py
190 lines (137 loc) · 5.98 KB
/
image.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import random
import os
from PIL import Image,ImageFilter,ImageDraw
import numpy as np
import h5py
from PIL import ImageStat
import cv2
import collections
import math
from utils import gen_xz, get_zbox, get_xbox, convert_array_to_rec, convert_bbox_format, bbox_iou
Rectangle = collections.namedtuple('Rectangle', ['x', 'y', 'width', 'height'])
def compute_iou(anchors, box):
gt_box = np.tile(box.reshape(1, -1), (anchors.shape[0], 1))
anchor_x1 = anchors[:, :1] - anchors[:, 2:3] / 2 + 0.5
anchor_x2 = anchors[:, :1] + anchors[:, 2:3] / 2 - 0.5
anchor_y1 = anchors[:, 1:2] - anchors[:, 3:] / 2 + 0.5
anchor_y2 = anchors[:, 1:2] + anchors[:, 3:] / 2 - 0.5
gt_x1 = gt_box[:, :1] - gt_box[:, 2:3] / 2 + 0.5
gt_x2 = gt_box[:, :1] + gt_box[:, 2:3] / 2 - 0.5
gt_y1 = gt_box[:, 1:2] - gt_box[:, 3:] / 2 + 0.5
gt_y2 = gt_box[:, 1:2] + gt_box[:, 3:] / 2 - 0.5
xx1 = np.max([anchor_x1, gt_x1], axis=0)
xx2 = np.min([anchor_x2, gt_x2], axis=0)
yy1 = np.max([anchor_y1, gt_y1], axis=0)
yy2 = np.min([anchor_y2, gt_y2], axis=0)
inter_area = np.max([xx2 - xx1, np.zeros(xx1.shape)], axis=0) * np.max([yy2 - yy1, np.zeros(xx1.shape)],
axis=0)
area_anchor = (anchor_x2 - anchor_x1) * (anchor_y2 - anchor_y1)
area_gt = (gt_x2 - gt_x1) * (gt_y2 - gt_y1)
iou = inter_area / (area_anchor + area_gt - inter_area + 1e-6)
return iou
def generate_anchor(total_stride, scales, ratios, score_size):
anchor_num = len(ratios) * len(scales)
anchor = np.zeros((anchor_num, 4), dtype=np.float32)
size = total_stride * total_stride
count = 0
for ratio in ratios:
ws = int(np.sqrt(size / ratio))
hs = int(ws * ratio)
for scale in scales:
wws = ws * scale
hhs = hs * scale
anchor[count, 0] = 0
anchor[count, 1] = 0
anchor[count, 2] = wws
anchor[count, 3] = hhs
count += 1
anchor = np.tile(anchor, score_size * score_size).reshape((-1, 4))
ori = - (score_size / 2) * total_stride
xx, yy = np.meshgrid([ori + total_stride * dx for dx in range(score_size)],
[ori + total_stride * dy for dy in range(score_size)])
# print(yy)
xx, yy = np.tile(xx.flatten(), (anchor_num, 1)).flatten(), \
np.tile(yy.flatten(), (anchor_num, 1)).flatten()
anchor[:, 0], anchor[:, 1] = xx.astype(np.float32), yy.astype(np.float32)
return anchor
def load_data(pair_infos, discrim, train = True):
img_path1 = pair_infos[0][0]
img_path2 = pair_infos[1][0]
bs1 = pair_infos[0][1] # xmin xmax ymin ymax
bs2 = pair_infos[1][1]
gt1 = Rectangle(bs1[0], bs1[2], bs1[1]-bs1[0], bs1[3]-bs1[2])
gt2 = Rectangle(bs2[0], bs2[2], bs2[1]-bs2[0], bs2[3]-bs2[2])
gt1 = convert_bbox_format(gt1, to='center-based')
gt2 = convert_bbox_format(gt2, to='center-based')
img1 = Image.open(img_path1).convert('RGB')
img2 = Image.open(img_path2).convert('RGB')
zbox1 = get_zbox(gt1, 0.25)
zbox2 = get_zbox(gt2, 0.25)
scales_w = 1.04 ** (random.random()*6-3)
scales_h = 1.04 ** (random.random()*6-3)
zbox2_scaled = Rectangle(zbox2.x, zbox2.y, zbox2.width*scales_w, zbox2.height*scales_h)
dx = 0
dy = 0
xbox2 = get_xbox(zbox2_scaled, dx, dy) # we assume second is the search region
z = gen_xz(img1, zbox1, to='z')
x = gen_xz(img2, xbox2, to='x')
info = [dx, dy, gt2.width/scales_w/zbox2.width, gt2.height/scales_h/zbox2.height]
gt_box = np.array([np.log(info[2]*2), np.log(info[3]*2)])
gt = np.zeros((1, 17, 17))
gt[:, :, :] = -1
gt[0, 8, 8] = 1.
gt[0, 7:10, 7:10] = 1.
gt[0, 8:9, 6:11] = 1.
gt[0, 6:11, 8:9] = 1.
return z, x, gt, gt_box
def load_data_rpn(pair_infos, discrim, train=True, rpnpp=False):
if not rpnpp:
anchors = generate_anchor(8, [8, ], [0.33, 0.5, 1, 2, 3], 17)
gt = np.zeros((1, 17, 17))
else:
anchors = generate_anchor(8, [8, ], [0.33, 0.5, 1, 2, 3], 25)
gt = np.zeros((1, 25, 25))
gt[:, :, :] = -1
gt[0, 8, 8] = 1.
img_path1 = pair_infos[0][0]
img_path2 = pair_infos[1][0]
bs1 = pair_infos[0][1] # xmin xmax ymin ymax
bs2 = pair_infos[1][1]
gt1 = Rectangle(bs1[0], bs1[2], bs1[1] - bs1[0], bs1[3] - bs1[2])
gt2 = Rectangle(bs2[0], bs2[2], bs2[1] - bs2[0], bs2[3] - bs2[2])
gt1 = convert_bbox_format(gt1, to='center-based')
gt2 = convert_bbox_format(gt2, to='center-based')
img1 = Image.open(img_path1).convert('RGB')
img2 = Image.open(img_path2).convert('RGB')
zbox1 = get_zbox(gt1, 0.25)
zbox2 = get_zbox(gt2, 0.25)
scales_w = 1.04 ** (random.random() * 6 - 3)
scales_h = 1.04 ** (random.random() * 6 - 3)
zbox2_scaled = Rectangle(zbox2.x, zbox2.y, zbox2.width * scales_w, zbox2.height * scales_h)
dx = 0
dy = 0
xbox2 = get_xbox(zbox2_scaled, dx, dy) # we assume second is the search region
z = gen_xz(img1, zbox1, to='z')
x = gen_xz(img2, xbox2, to='x')
info = [dx, dy, gt2.width / scales_w / zbox2.width, gt2.height / scales_h / zbox2.height]
gt_box = np.array([-info[0] * 64, -info[1] * 64, info[2] * 128, info[3] * 128])
anchor_xctr = anchors[:, :1]
anchor_yctr = anchors[:, 1:2]
anchor_w = anchors[:, 2:3]
anchor_h = anchors[:, 3:]
gt_cx, gt_cy, gt_w, gt_h = gt_box
target_x = (gt_cx - anchor_xctr) / anchor_w
target_y = (gt_cy - anchor_yctr) / anchor_h
target_w = np.log(gt_w / anchor_w)
target_h = np.log(gt_h / anchor_h)
regression_target = np.hstack((target_x, target_y, target_w, target_h))
iou = compute_iou(anchors, gt_box).flatten()
# print(np.max(iou))
pos_index = np.where(iou > 0.4)[0]
neg_index = np.where(iou < 0.3)[0]
label = np.ones_like(iou) * -1
label[pos_index] = 1
label[neg_index] = 0
return z, x, gt_box, regression_target, label
if __name__ == '__main__':
anchor = generate_anchor(8, [8, ], [0.33, 0.5, 1, 2, 3], 17)