-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathconvert_to_voc.py
96 lines (92 loc) · 3.78 KB
/
convert_to_voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# -*- coding: UTF-8 -*-
import codecs
import hashlib
import traceback
import os
import json
import random
import xml2dict
import pandas as pd
def convert_to_voc2007(file_path_1='annotation/annotation1.txt', file_path_2='annotation/annotation2.txt'):
"""转换标注数据为VOC2007格式"""
# with codecs.open(file_path, mode='r', encoding='utf-8') as file:
# lines = file.readlines()
df_1 = pd.read_csv(file_path_1)
df_2 = pd.read_csv(file_path_2)
df = pd.concat([df_1, df_2], axis=0)
# lines = df.iterrows()
annotations = dict()
for index, line in df.iterrows():
# if line.strip()=='':continue
# values = line.strip().split(',')
name = line['filename']
type = line['class']
object = dict()
object['name'] = type
object['pose'] = 'Unspecified'
object['truncated'] = 0
object['difficult'] = 0
object['bndbox'] = dict()
object['bndbox']['xmin'] = line['xmin']
object['bndbox']['ymin'] = line['ymin']
object['bndbox']['xmax'] = line['xmax']
object['bndbox']['ymax'] = line['ymax']
if name not in annotations:
annotation = dict()
annotation['folder'] = 'VOC2007'
annotation['filename'] = name
annotation['size'] = dict()
annotation['size']['width'] = line['width'] # 若样本未统一尺寸,请根据实际情况获取
annotation['size']['height'] = line['height'] # 若样本未统一尺寸,请根据实际情况获取
annotation['size']['depth'] = 3
annotation['segmented'] = 0
annotation['object'] = [object]
annotations[name] = annotation
else:
annotation = annotations[name]
annotation['object'].append(object)
names = []
path = 'annotation/VOC2007/'
if not os.path.exists(path+'Annotations'):
os.makedirs(path+'Annotations')
for annotation in annotations.items():
filename = annotation[0].split('.')[0]
names.append(filename)
dic = {'annotation':annotation[1]}
convertedXml = xml2dict.unparse(dic)
xml_nohead = convertedXml.split('\n')[1]
file = codecs.open(path + 'Annotations/'+filename + '.xml', mode='w', encoding='utf-8')
file.write(xml_nohead)
file.close()
random.shuffle(names)
if not os.path.exists(path+'ImageSets'):
os.mkdir(path+'ImageSets')
if not os.path.exists(path+'ImageSets/Main'):
os.mkdir(path+'ImageSets/Main')
file_train = codecs.open(path+'ImageSets/Main/train.txt',mode='w',encoding='utf-8')
file_test = codecs.open(path + 'ImageSets/Main/test.txt', mode='w', encoding='utf-8')
file_train_val = codecs.open(path + 'ImageSets/Main/trainval.txt', mode='w', encoding='utf-8')
file_val = codecs.open(path + 'ImageSets/Main/val.txt', mode='w', encoding='utf-8')
count = len(names)
count_1 = 0.25 * count
count_2 = 0.9 * count
for i in range(count):
if i < count_1:
file_train_val.write(names[i]+'\n')
file_train.write(names[i] + '\n')
elif count_1 <= i <count_2:
file_train_val.write(names[i] + '\n')
file_val.write(names[i] + '\n')
else:
file_test.write(names[i] + '\n')
file_train.close()
file_test.close()
file_train_val.close()
file_val.close()
if __name__ == '__main__':
# convert_to_voc2007()
# train = pd.read_csv('/home/zll/Downloads/projects/hand_det/train/train_labels.csv')
# test = pd.read_csv('/home/zll/Downloads/projects/hand_det/test/test_labels.csv')
# all = pd.concat([train, test], axis=0, ignore_index=True)
# all.to_csv('./label.csv', index=False)
convert_to_voc2007('./images/train/train_labels.csv', './images/test/test_labels.csv')