forked from dcf21/planisphere
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraphics_context.py
810 lines (677 loc) · 28.5 KB
/
graphics_context.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
# graphics_context.py
# -*- coding: utf-8 -*-
#
# The python script in this file makes the various parts of a model planisphere.
#
# Copyright (C) 2014-2024 Dominic Ford <https://dcford.org.uk/>
#
# This code is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# You should have received a copy of the GNU General Public License along with
# this file; if not, write to the Free Software Foundation, Inc., 51 Franklin
# Street, Fifth Floor, Boston, MA 02110-1301, USA
# ----------------------------------------------------------------------------
"""
A thin wrapper to produce vector graphics using cairo.
"""
import logging
from math import pi, sin, cos
from typing import Dict, List, Optional, Sequence, Union
import cairocffi as cairo
from constants import unit_deg, unit_mm, font_size_base, line_width_base, dots_per_inch
class GraphicsPage:
"""
A thin wrapper to produce vector graphics using cairo. This class represents a page / image file we are going
to draw onto.
"""
def __init__(self,
img_format: str = "png",
output: str = "page",
width: float = 0.15,
height: float = 0.15,
dots_per_inch: float = dots_per_inch):
"""
A thin wrapper to produce vector graphics using cairo. This class represents a page / image file we are going
to draw onto.
:param img_format:
The image format we are to produce.
:param output:
The filename of the image file we are to produce, without file type suffix
:param width:
The width of the page, metres
:param height:
The height of the page, metres
:param dots_per_inch:
The dots per inch resolution to render this page
"""
# PDF surfaces are always measured in points
if img_format in ("pdf", "svg"):
dots_per_inch = 72.
self.format: str = img_format
self.output: str = "{}.{}".format(output, img_format)
self.dots_per_metre: float = dots_per_inch * 39.370079
self.width: int = int(width * self.dots_per_metre) # pixels
self.height: int = int(height * self.dots_per_metre) # pixels
self.surface: Optional[cairo.Surface] = None
if self.format == "pdf":
self.surface = cairo.PDFSurface(self.output, self.width, self.height)
elif self.format == "png":
self.surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, self.width, self.height)
elif self.format == "svg":
self.surface = cairo.SVGSurface(self.output, self.width, self.height)
else:
assert False, "Unknown image output format {}".format(self.format)
def __del__(self) -> None:
"""
Save the canvas we have drawn to disk
:return:
None
"""
# Protect against being called twice
if self.surface is None:
return
logging.info("Creating file <{}>".format(self.output))
if self.format == "pdf":
self.surface.show_page()
elif self.format == "png":
self.surface.write_to_png(self.output)
elif self.format == "svg":
self.surface.show_page()
else:
assert False, "Unknown image output format {}".format(self.format)
# Clean up
self.surface.finish()
self.surface = None
def __enter__(self):
return self
def __exit__(self, err_type, err_value, err_tb):
self.__del__()
@staticmethod
def supported_formats() -> Sequence[str]:
return "pdf", "png", "svg"
class GraphicsContext:
"""
A thin wrapper to produce vector graphics using cairo. This class provides a drawing context that we can use to
draw a figure onto a page.
"""
def __init__(self,
page: GraphicsPage,
offset_x: float = 0,
offset_y: float = 0,
rotation: float = 0):
"""
A thin wrapper to produce vector graphics using cairo. This class provides a drawing context that we can use to
draw a figure onto a page.
:param page:
The GraphicsPage we are going to draw onto
:param offset_x:
The offset of this drawing from (0,0) on the page, metres
:param offset_y:
The offset of this drawing from (0,0) on the page, metres
:param rotation:
The rotation of this drawing, radians
"""
assert isinstance(page, GraphicsPage)
# Record our drawing state
self.base_line_width: float = line_width_base
self.base_font_size: float = font_size_base
self.font_size: Optional[float] = False
self.font_bold: bool = False
self.font_italic: bool = False
self.line_dotted: bool = False
# Create Cairo context with default settings for requested canvas
self.context: cairo.Context = cairo.Context(target=page.surface)
self.context.scale(sx=page.dots_per_metre, sy=page.dots_per_metre)
self.context.translate(tx=offset_x, ty=offset_y)
self.context.rotate(radians=rotation * unit_deg)
self.set_line_width(line_width=1)
self.set_font_style()
self.set_font_size(font_size=1)
self.context.set_fill_rule(fill_rule=cairo.FILL_RULE_EVEN_ODD)
def __enter__(self):
return self
def __exit__(self, err_type, err_value, err_tb):
pass
def begin_path(self) -> None:
"""
Begin a new path.
"""
self.context.new_path()
def begin_sub_path(self) -> None:
"""
Begin a new closed shape within the current path
"""
self.context.new_sub_path()
def move_to(self, x: float, y: float) -> None:
"""
Move
:param x:
Position, metres
:param y:
Position, metres
:return:
None
"""
self.context.move_to(x=x, y=y)
def line_to(self, x: float, y: float) -> None:
"""
Line element
:param x:
Position, metres
:param y:
Position, metres
:return:
None
"""
self.context.line_to(x=x, y=y)
def curve_to(self, x0: float, y0: float, x1: float, y1: float, x2: float, y2: float) -> None:
"""
Bézier curve element
:param x0:
First control point, metres
:param y0:
First control point, metres
:param x1:
Second control point, metres
:param y1:
Second control point, metres
:param x2:
End point, metres
:param y2:
End point, metres
:return:
None
"""
self.context.curve_to(x1=x0, y1=y0, x2=x1, y2=y1, x3=x2, y3=y2)
def close_path(self) -> None:
"""
Close the current path.
"""
self.context.close_path()
def stroke(self, line_width: Optional[float] = None,
color: Optional[Sequence[float]] = None, dotted: Optional[bool] = None) -> None:
"""
Stroke the current path
"""
if line_width is not None:
self.set_line_width(line_width=line_width)
if color is not None:
self.set_color(color=color)
if dotted is not None:
self.set_line_style(dotted=dotted)
self.context.stroke_preserve()
def fill(self, color: Optional[Sequence[float]] = None) -> None:
"""
Fill the current path
"""
if color is not None:
self.set_color(color=color)
self.context.fill_preserve()
def clip(self) -> None:
"""
Use the current path as a clipping region.
"""
self.context.clip()
def arc(self, centre_x: float, centre_y: float, radius: float, arc_from: float, arc_to: float) -> None:
"""
Add an arc element to the current path.
:param centre_x:
The centre of the arc, metres
:param centre_y:
The centre of the arc, metres
:param radius:
The radius of the arc, metres
:param arc_from:
The angle where the arc is to start, radians
:param arc_to:
The angle where the arc is to end, radians
"""
self.context.arc(xc=centre_x, yc=centre_y, radius=radius, angle1=arc_from, angle2=arc_to)
def circle(self, centre_x: float, centre_y: float, radius: float) -> None:
"""
Add an arc element to the current path.
:param centre_x:
The centre of the circles, metres
:param centre_y:
The centre of the circles, metres
:param radius:
The radius of the circles, metres
"""
self.arc(centre_x=centre_x, centre_y=centre_y, radius=radius, arc_from=0, arc_to=2 * pi)
def rectangle(self, x0: float, y0: float, x1: float, y1: float) -> None:
"""
Add a rectangle to the current path.
:param x0:
The left side of the box, metres
:param y0:
The top side of the box, metres
:param x1:
The right side of the box, metres
:param y1:
The bottom side of the box, metres
"""
self.context.rectangle(x=x0, y=y0, width=x1 - x0, height=y1 - y0)
def set_color(self, color: Sequence[float]) -> None:
"""
Set the colour used for both stroke and fill operations.
:param color:
List of four float values: Red/green/blue/alpha. Each should be a float between 0 and 1.
:return:
None
"""
self.context.set_source_rgba(red=color[0], green=color[1], blue=color[2], alpha=color[3])
def set_line_style(self, dotted: Optional[bool] = None) -> None:
"""
Select the stroke style used to stroke lines.
:param dotted:
Boolean flag indicating whether lines should be dotted or continuous.
:return:
None
"""
if dotted is not None:
self.line_dotted = dotted
if self.line_dotted:
self.context.set_dash([1.0 * unit_mm])
else:
self.context.set_dash([])
def set_font_size(self, font_size: float) -> None:
"""
Change the font size used to render text.
:param font_size:
Font size, relative to default
"""
self.font_size = font_size
self.context.set_font_size(font_size * self.base_font_size)
def set_font_style(self, italic: Optional[bool] = None, bold: Optional[bool] = None) -> None:
"""
Sets the font style (i.e. bold or italic) used.
:param italic:
Boolean flag, indicating whether text should be italic. None indicates we preserve the existing setting.
:param bold:
Boolean flag, indicating whether text should be bold. None indicates we preserve the existing setting.
"""
if italic is not None:
self.font_italic = italic
if bold is not None:
self.font_bold = bold
self.context.select_font_face(family="FreeSerif",
slant=cairo.FONT_SLANT_ITALIC if self.font_italic else cairo.FONT_SLANT_NORMAL,
weight=cairo.FONT_WEIGHT_BOLD if self.font_bold else cairo.FONT_SLANT_NORMAL
)
def set_line_width(self, line_width: float) -> None:
"""
Sets the line width used to stroke paths.
:param line_width:
Line width, relative to the base line-width defined in <constants.py>
:return:
None
"""
self.context.set_line_width(width=line_width * self.base_line_width)
def text(self, text: str, x: float, y: float,
h_align: int = 0, v_align: int = 0,
gap: float = 0, rotation: float = 0) -> None:
"""
Add a text string to the drawing canvas.
:param text:
The string to write
:param x:
The horizontal position of the string
:param y:
The vertical position of the string
:param h_align:
The horizontal alignment of the string: -1 left; 0 centred; 1 right
:param v_align:
The vertical alignment of the string: -1 top; 0 centred; 1 bottom
:param gap:
Leave a gap between the anchor point (x,y) and where the text is rendered
:param rotation:
The rotation angle of the text, radians
:return:
None
"""
text: str = str(text)
extent: Dict[str, float] = self.measure_text(text=text)
# Cairo places top-left of text at specified point. For other alignments, we calculate where this point will be
offset_x: float = 0
offset_y: float = 0
if h_align >= 0:
offset_x -= extent['width'] / 2
if h_align > 0:
offset_x -= extent['width'] / 2
if v_align >= 0:
offset_y += extent['height'] / 2
if v_align > 0:
offset_y += extent['height'] / 2
# Now draw text
self.context.save()
self.context.translate(tx=x, ty=y)
self.context.rotate(radians=rotation)
self.context.move_to(x=offset_x + gap * h_align, y=offset_y + gap * v_align)
self.context.show_text(text=text)
self.context.restore()
def measure_text(self, text: str) -> Dict[str, float]:
"""
Measure the dimensions of a string of text, as it would be rendered in the currently-selected font.
:param text:
Text string to render
:return:
Dictionary of size information about the text string
"""
# Measure text
(x, y, width, height, dx, dy) = self.context.text_extents(text=text)
# Return dimensions
return {
"x": x,
"y": y,
"width": width,
"height": height,
"dx": dx,
"dy": dy
}
def circular_text(self, text: str, centre_x: float, centre_y: float,
radius: float, azimuth: float, spacing: float, size: float) -> None:
"""
Write a text string around a circular path.
:param text:
The string that we are to write
:param centre_x:
The horizontal position of the centre of the circle we are to write the text around
:param centre_y:
The vertical position of the centre of the circle we are to write the text around
:param radius:
The radius of the circular path we are to write the text around / pixel
:param azimuth:
The angle, in degrees, where the text string is to be centred. Measured clockwise from straight up.
:param spacing:
The spacing between the letters.
:param size:
The font size to use
:return:
None
"""
self.set_font_size(size)
# First calculate total length of text
text_width: float = 0
for char in text:
text_width += float(self.measure_text(text=char)['dx']) * 1.1
# Work out the angular span of the text around the specified circular path
text_angular_width: float = text_width / radius
# Work out the azimuth at which we need to start, in order to have centre of text at specified azimuth
current_azimuth: float = azimuth * unit_deg - spacing * text_angular_width / 2
# Then render text, one character at a time
for char in text:
dimensions: Dict[str, float] = self.measure_text(text=char)
character_width: float = float(dimensions['dx']) * 1.1
self.text(text=char,
x=centre_x + cos(current_azimuth) * radius,
y=centre_y - sin(current_azimuth) * radius,
h_align=-1, v_align=-1,
rotation=-current_azimuth - 90 * unit_deg
)
current_azimuth += (character_width * spacing) / radius
def text_wrapped(self, text: Union[str, Sequence], x: float, y: float, width: float,
justify: int = 0, line_spacing: float = 1.3,
h_align: int = 0, v_align: int = 0, rotation: float = 0) -> None:
"""
Add a text string to the drawing canvas.
:param text:
The string to write
:param x:
The horizontal position of the string, metres
:param y:
The vertical position of the string, metres
:param width:
The maximum allowed length of each line, metres
:param justify:
The horizontal justification of the string: -1 left; 0 centred; 1 right
:param line_spacing:
The spacing, in line heights, between lines of text
:param h_align:
The horizontal alignment of the string: -1 left; 0 centred; 1 right
:param v_align:
The vertical alignment of the string: -1 top; 0 centred; 1 bottom
:param rotation:
The rotation angle of the text, radians
"""
if not isinstance(text, (list, tuple)):
text = [text]
# Assemble a list of all the lines we are going to display
line_buffer: List[str] = []
# Loop through each of the paragraphs of input text, one by one. They are supplied as a list or tuple.
for paragraph in text:
line: str = ""
# Add each word in turn to the current line, until it becomes too long
for word in paragraph.split():
line_new = "{} {}".format(line, word).strip()
line_new_width = self.measure_text(line_new)['width']
# If the line is too long, start a new line
if line_new_width > width:
line_buffer.append(line)
line = word
# Otherwise, keep adding words to the existing line
else:
line = line_new
# Add last line of text to buffer
line_buffer.append(line)
line_heights: List[float] = [self.font_size * self.base_font_size * line_spacing for line in line_buffer]
total_height: float = sum(line_heights)
# Now draw text, line by line
self.context.save()
self.context.translate(tx=x, ty=y)
self.context.rotate(radians=rotation)
horizontal_anchor: int = justify - h_align
x_anchor: float = (width / 2) * horizontal_anchor
if v_align > 0:
y_anchor: float = 0
elif v_align == 0:
y_anchor = -total_height / 2
else:
y_anchor = -total_height
for line_number, line in enumerate(line_buffer):
self.text(text=line, x=x_anchor, y=y_anchor, h_align=justify, v_align=-1)
y_anchor += line_heights[line_number]
self.context.restore()
def paint_png_image(self, png_filename: str, x_left: float, y_top: float,
target_width: float, target_height: float) -> bool:
"""
Render a PNG image onto the Cairo canvas.
:param png_filename:
The filename of the PNG file to render
:param x_left:
The X coordinate of the left side of the image on the canvas, metres
:param y_top:
The Y coordinate of the top side of the image on the canvas, metres
:param target_width:
The intended width of the image, metres
:param target_height:
The intended height of the image, metres
:return:
Boolean flag indicating whether the image was successfully rendered
"""
# Save the state of the display context
self.context.save()
try:
# Create a Cairo image surface with the PNG image on it
image_surface: cairo.ImageSurface = cairo.ImageSurface.create_from_png(png_filename)
# Measure the PNG image
img_height: int = image_surface.get_height()
img_width: int = image_surface.get_width()
# Calculate proportional scaling to get the image to the desired size
width_ratio: float = float(target_width) / float(img_width)
height_ratio: float = float(target_height) / float(img_height)
# Scale image and add it to the canvas
self.context.translate(x_left, y_top)
self.context.scale(width_ratio, height_ratio)
self.context.set_source_surface(image_surface)
self.context.paint()
outcome: bool = True
except:
logging.info("Failed to render PNG image")
outcome = False
# Make sure that we undo the coordinate transformation, even if the image render fails
self.context.restore()
# Return success flag
return outcome
def matrix_transformation_set(self, xx: float, yx: float, xy: float, yy: float, x0: float, y0: float,
centre_x: float, centre_y: float) -> None:
"""
Apply a matrix transformation to the Cairo drawing context.
x_new = xx * x + xy * y + x0
y_new = yx * x + yy * y + y0
"""
self.context.save()
self.context.translate(tx=centre_x, ty=centre_y)
self.context.transform(cairo.Matrix(xx=xx, yx=yx, xy=xy, yy=yy, x0=x0, y0=y0))
def matrix_transformation_restore(self) -> None:
"""
Undo a matrix transformation to the Cairo drawing context.
"""
self.context.restore()
class BaseComponent:
"""
A class wrapping a piece of code used to draw a single component of the model.
"""
def __init__(self, settings: Optional[dict] = None):
"""
A class wrapping a piece of code used to draw a single component of the model.
:param settings:
Settings used in the rendering of this component
"""
if settings is None:
settings = {}
self.settings: dict = settings
def render_to_page(self, page: GraphicsPage, offset_x: float = 0, offset_y: float = 0, rotation: float = 0) -> None:
"""
Render this component onto a Page object.
:param page:
The GraphicsPage we are going to draw onto
:param offset_x:
The offset of this drawing from (0,0) on the page, metres
:param offset_y:
The offset of this drawing from (0,0) on the page, metres
:param rotation:
The rotation of this drawing, float
"""
# Make sure that the page we're going to draw onto is of the correct type
assert isinstance(page, GraphicsPage)
# Create a drawing context for drawing onto this page
with GraphicsContext(page=page, offset_x=offset_x, offset_y=offset_y, rotation=rotation) as context:
# Render this item
self.do_rendering(settings=self.settings, context=context)
def render_to_file(self, filename: Optional[str] = None, img_format: str = "png",
dots_per_inch: float = dots_per_inch) -> None:
"""
Renders the component to an image file.
:param filename:
The filename of the image file to create (without file type stub)
:param img_format:
The format of the image file to create
:param dots_per_inch:
The dots per inch resolution to render this page
:type dots_per_inch:
float
:return:
BaseComponent instance
"""
# Look up the bounding box of the item we're about to draw
bounding_box: Dict[str, float] = self.bounding_box(settings=self.settings)
# If no filename is specified, then individual derived classes should specify a default
if filename is None:
filename = self.default_filename()
# Create a graphics page large enough to hold this item
with GraphicsPage(img_format=img_format, output=filename,
width=bounding_box['x_max'] - bounding_box['x_min'],
height=bounding_box['y_max'] - bounding_box['y_min'],
dots_per_inch=dots_per_inch
) as page:
# Render the item
self.render_to_page(page=page,
offset_x=-bounding_box['x_min'],
offset_y=-bounding_box['y_min'])
def render_all_formats(self, filename: Optional[str] = None, dots_per_inch: float = dots_per_inch) -> None:
"""
Quick shortcut to render this component in all the standard image formats.
:param filename:
The filename of the image file to create (without file type stub)
:param dots_per_inch:
The dots per inch resolution to render this page
:type dots_per_inch:
float
:return:
None
"""
# Produce each image format in turn
for img_format in GraphicsPage.supported_formats():
# Render the item
self.render_to_file(filename=filename,
img_format=img_format,
dots_per_inch=dots_per_inch)
def bounding_box(self, settings: dict) -> Dict[str, float]:
"""
This method is required to report the bounding box of the canvas area used by this item.
:param settings:
A dictionary of settings required by the renderer.
:return:
Dictionary with the elements 'x_min', 'x_max', 'y_min and 'y_max' set to the canvas area required.
"""
raise NotImplementedError("Derived classes of type <BaseComponent> must implement a method <bounding_box> "
"which reports the area of canvas they require.")
def default_filename(self) -> str:
"""
This method is required to report a default filename to use for this item, without file type suffix.
:return:
string
"""
raise NotImplementedError("Derived classes of type <BaseComponent> must implement a method "
"<default_filename> which report a default filename to use for this item, without "
"file type suffix.")
def do_rendering(self, settings: dict, context: GraphicsContext) -> None:
"""
This method is required to actually render this item.
:param settings:
A dictionary of settings required by the renderer.
:param context:
A GraphicsContext object to use for drawing
:return:
None
"""
raise NotImplementedError("Derived classes of type <BaseComponent> must implement a method <do_rendering> "
"to draw the component.")
class CompositeComponent(BaseComponent):
"""
A class allowing multiple components to be overlaid on a single canvas
"""
def __init__(self, components: Sequence[BaseComponent], settings: Optional[dict] = None):
self.components: Sequence[BaseComponent] = components
super(CompositeComponent, self).__init__(settings=settings)
def default_filename(self) -> str:
return "composite_page"
def bounding_box(self, settings: dict) -> Dict[str, float]:
"""
Work out overall bounding box of all items when constituent components are overlaid.
:param settings:
A dictionary of settings required by the renderer.
"""
bounding_boxes: Sequence[Dict[str, float]] = [item.bounding_box(settings=item.settings)
for item in self.components]
return {
'x_min': min([item['x_min'] for item in bounding_boxes]),
'x_max': max([item['x_max'] for item in bounding_boxes]),
'y_min': min([item['y_min'] for item in bounding_boxes]),
'y_max': max([item['y_max'] for item in bounding_boxes]),
}
def do_rendering(self, settings: dict, context: GraphicsContext) -> None:
"""
Render each of the subcomponents we are overlaying in turn.
:param settings:
A dictionary of settings required by the renderer.
:param context:
A GraphicsContext object to use for drawing
:return:
None
"""
for item in self.components:
item.do_rendering(settings=settings, context=context)