-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrain_sc_ft.py
189 lines (142 loc) · 5.74 KB
/
train_sc_ft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
"""
Chuhang Zou
07.2019
Code Revised from:
Finetuning Torchvision Models
=============================
**Author:** `Nathan Inkawhich <https://github.com/inkawhich>`__
"""
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torchvision import models, transforms
import time
import copy
print("PyTorch Version: ",torch.__version__)
from torch.utils import data
from model_sc import *
from data_generator_sc_ft import *
# Top level data directory. Here we assume the format of the directory conforms
# to the ImageFolder structure
# five fold cross validation
model_path = "./model/Silhouette_Completion_Pix3D_fold1.pth"
# change folder name for the 5 five cross-validation test: train_fold1/2/3/4/5, val_fold1/2/3/4/5
train_datapath = './data/pix3d/train_fold1/'
val_datapath = './data/pix3d/val_fold1/'
# Pre-trained models to choose from [resnet18, resnet34, resnet50]
model_name = "resnet50"
# if load pretrained model
Flag_loadweights = True
weight_path = "./model/Silhouette_Completion_DYCE_resnet50.pth"
# Number of classes in the dataset
num_classes = 1024
# Batch size for training (change depending on how much memory you have)
batch_size = 32
# Number of epochs to train for
num_epochs = 100000
steps_per_epoch = 20
# Model Training and Validation Code
def train_model(model, train_generator, val_generator, optimizer, criterion, steps=100, num_epochs=25):
since = time.time()
val_acc_history = []
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = np.Inf
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
dataloaders = train_generator
else:
model.eval() # Set model to evaluate mode
dataloaders = val_generator
loss_sum = 0.0
step = 0
# Iterate over data.
for input in dataloaders:
inputs = input[0]
labels = input[1]
# gpu mode
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
# Get model outputs and calculate loss
outputs = model(inputs)
# loss
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 5.0)
optimizer.step()
# statistics
loss_sum += loss.item()*inputs.size(0)/steps
# Break after 'steps' steps
if step==steps-1:
break
step += 1
print('{} Loss: {:.6f}'.format(phase, loss_sum))
# deep copy the model
if phase == 'val' and loss_sum < best_acc:
best_acc = loss_sum
best_model_wts = copy.deepcopy(model.state_dict())
# save model
torch.save(best_model_wts, model_path)
print("Model saved ...")
if phase == 'val':
val_acc_history.append(loss_sum)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:6f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history
print("Load Models...")
# Define the encoder
encoder = initialize_encoder(model_name, num_classes,use_pretrained=True)
# Full model
model_ft = SegNet(encoder, num_classes)
# Model initialization
set_parameter_requires_grad(model_ft)
# Print the model we just instantiated
#print(model_ft)
# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Send the model to GPU
model_ft = model_ft.to(device)
# if load weights
if Flag_loadweights:
pretrained_dict = torch.load(weight_path)
model_dict = model_ft.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model_ft.load_state_dict(model_dict)
# Gather the parameters to be optimized/updated in this run.
params_to_update = model_ft.parameters()
#print("Params to learn:")
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
print("\t",name)
# Create the Optimizer
optimizer_ft = optim.Adam(params_to_update, lr = 1e-4, eps = 1e-6)
# Setup the loss
criterion = nn.BCELoss()
# Load Data
print("Initializing Datasets and Dataloaders...")
train_set = ShapeNetDataset(train_datapath, 'train', transform=True)
train_generator = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True, num_workers=4)
val_set = ShapeNetDataset(val_datapath, 'val', transform=True)
val_generator = torch.utils.data.DataLoader(val_set, batch_size=batch_size, shuffle=True, num_workers=4)
# Train and evaluate
model_ft, hist = train_model(model_ft, train_generator, val_generator, optimizer_ft, criterion, steps_per_epoch, num_epochs=num_epochs)
print('training done')