Skip to content

Commit

Permalink
refactor: remove unnecessary whitespace
Browse files Browse the repository at this point in the history
Blank lines should not contain any tabs or spaces.
  • Loading branch information
deepsource-autofix[bot] authored Jan 26, 2024
1 parent c5ec7d5 commit c80f8f2
Show file tree
Hide file tree
Showing 4 changed files with 41 additions and 41 deletions.
10 changes: 5 additions & 5 deletions model-gym-ros-env/car_node/car_node/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,10 +27,10 @@
SPEED_SCALE = 0.7

class PPOModelEvaluator(Node):

def __init__(self):
super().__init__('wall_follow_node')

#Topics & Subs, Pubs
lidarscan_topic = '/scan'
drive_topic = '/drive'
Expand All @@ -49,12 +49,12 @@ def __init__(self):
def lidar_callback(self, data):
d = np.array(data.ranges, dtype=np.float64)
d = convert_range(d, [data.angle_min, data.angle_max], [-1, 1])

action, _states = self.model.predict(d, deterministic=True)
action = self.eval_env.un_normalise_actions(action)

self.get_logger().info(f'{action[0], action[1]}')

drive_msg = AckermannDriveStamped()
drive_msg.header.stamp = self.get_clock().now().to_msg()
drive_msg.header.frame_id = "laser"
Expand Down
20 changes: 10 additions & 10 deletions model-gym-ros-env/car_node/car_node/wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -71,7 +71,7 @@ def __init__(self, env, random_map=False):

def get_total_steps(self) -> int:
return self.step_count

def get_episode_rewards(self) -> List[float]:
"""
Returns the rewards of all the episodes
Expand All @@ -81,7 +81,7 @@ def get_episode_rewards(self) -> List[float]:
return self.episode_returns





def set_raceliens(self):
Expand Down Expand Up @@ -128,13 +128,13 @@ def step(self, action):
('c3B/stream', self.race_line_color))

reward = 0







if self.count < len(self.race_line_x) - 1:
X, Y = observation['poses_x'][0], observation['poses_y'][0]

dist = np.sqrt(np.power((X - next_x), 2) + np.power((Y - next_y), 2))
if dist < 2:
self.count = self.count + 1
Expand All @@ -156,7 +156,7 @@ def step(self, action):
+
np.power((observation["poses_y"][0] - self.last_position['y']), 2)
)

# if distance_from_last_position > 0.0005:
# reward += 0.8
# else:
Expand Down Expand Up @@ -194,7 +194,7 @@ def step(self, action):

self.episode_returns.append(reward)




return self.normalise_observations(observation['scans'][0]), reward, bool(done), info
Expand Down Expand Up @@ -222,7 +222,7 @@ def reset(self):
race_line_x = race_line_x[random_index:] + race_line_x[:random_index]
race_line_y = race_line_y[random_index:] + race_line_y[:random_index]
race_line_theta = race_line_theta[random_index:] + race_line_theta[:random_index]


self.race_line_x = race_line_x
self.race_line_y = race_line_y
Expand Down Expand Up @@ -261,4 +261,4 @@ def un_normalise_actions(self, actions):
def normalise_observations(self, observations):
# convert observations from normal lidar distances range to range [-1, 1]
return convert_range(observations, [self.lidar_min, self.lidar_max], [-1, 1])

4 changes: 2 additions & 2 deletions src/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ def train(
eval_env.set_map_path(path)
eval_env.seed(1773449316)
eval_env.set_optimize_speed(optimize_speed)


timesteps_list = np.logspace(np.log10(min_timesteps), np.log10(max_timesteps), num=num_of_steps, endpoint=True, base=10.0, dtype=int, axis=0)
learning_rate_list = np.logspace(np.log10(max_learning_rate), np.log10(min_learning_rate), num=num_of_steps, endpoint=True, base=10.0, dtype=None, axis=0)
Expand All @@ -43,7 +43,7 @@ def train(
for timesteps, learning_rate in zip(timesteps_list, learning_rate_list):

eval_env.seed(round(np.random.rand()*1000000000))

if os.path.exists("./train_test/best_global_model.zip"):
print("Loading Existing Model")
model = PPO.load("./train_test/best_global_model", eval_env, learning_rate=linear_schedule(learning_rate), device=device)
Expand Down
48 changes: 24 additions & 24 deletions src/wrapper/wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ def logger(map, event, reword, lap_time):
with open('log.csv', 'a', newline='') as file:
writer = csv.writer(file)
writer.writerow([map, event, reword, lap_time])


def convert_range(value, input_range, output_range):
# converts value(s) from range to another range
Expand Down Expand Up @@ -61,7 +61,7 @@ def __init__(self, env, random_map=False):

# set threshold for maximum angle of car, to prevent spinning
self.max_theta = 100


self.map_path = None
self.random_map = random_map
Expand Down Expand Up @@ -120,11 +120,11 @@ def start_position(self):


def step(self, action):

def episode_end(reason = None, rew = 0):
if reason is not None:
print("Episode End ->", reason, self.map_path)

done = True
self.count = 0
self.episode_returns = []
Expand All @@ -147,8 +147,8 @@ def episode_end(reason = None, rew = 0):
('c3B/stream', self.race_line_color))

reward = 0


aceleration_reward = action_convert[1]

if self.optimize_speed:
Expand All @@ -158,11 +158,11 @@ def episode_end(reason = None, rew = 0):
reward += 2

reward = reward * 0.01


if self.count < len(self.race_line_x) - 1:
X, Y = observation['poses_x'][0], observation['poses_y'][0]

dist = np.sqrt(np.power((X - next_x), 2) + np.power((Y - next_y), 2))
if dist < 2:
self.count = self.count + 1
Expand All @@ -171,54 +171,54 @@ def episode_end(reason = None, rew = 0):

if dist < 2.5:
self.number_of_base_reward_give += 1

if self.number_of_base_reward_give < 100:
reward += 0.05
else:
reward -= 1

if dist > 3:
reward -= 1


else:
steps_goal = self.count
if not self.one_lap_done:
steps_done = self.step_for_episode
elif self.one_lap_done:
steps_done = self.step_for_episode / 2

k = (steps_done - steps_goal)/steps_goal

reward += (1-k) * 100

print("----------------- Lap Done ----------------->", self.map_path, self.step_for_episode * 0.01, reward)

self.count = 0

if self.one_lap_done:
logger(self.map_path, "lap_done", sum(self.episode_returns), self.step_for_episode * 0.01)
self.episode_returns = []
self.step_for_episode = 0
self.one_lap_done = False
else:
self.one_lap_done = True


reward = round(reward, 6)



if observation['collisions'][0]:
logger(self.map_path, "collisions", sum(self.episode_returns), self.step_for_episode * 0.01)
done, reward = episode_end(rew = -30)



if self.step_for_episode > 50_000:
logger(self.map_path, "too_slow", sum(self.episode_returns), self.step_for_episode * 0.01)
done, reward = episode_end("Too long", -10)

self.episode_returns.append(reward)
self.step_for_episode += 1

Expand Down Expand Up @@ -249,7 +249,7 @@ def reset(self):
race_line_x = race_line_x[random_index:] + race_line_x[:random_index]
race_line_y = race_line_y[random_index:] + race_line_y[:random_index]
race_line_theta = race_line_theta[random_index:] + race_line_theta[:random_index]


self.race_line_x = race_line_x
self.race_line_y = race_line_y
Expand Down Expand Up @@ -289,4 +289,4 @@ def un_normalise_actions(self, actions):
def normalise_observations(self, observations):
# convert observations from normal lidar distances range to range [-1, 1]
return convert_range(observations, [self.lidar_min, self.lidar_max], [-1, 1])

0 comments on commit c80f8f2

Please sign in to comment.