-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrf_cloudy.py
97 lines (72 loc) · 2.76 KB
/
crf_cloudy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
'''
INPUT:
- S5P (TROPOPMI) L2 product files
OUTPUT:
- csv file of cloudy data, which can be used to generate histogram
variables: lon, lat, sza, cp, and crf varibales
conditions:
- lat > 0
- crf >= 0.7
- sza < 80
UPDATE:
Xin Zhang:
2022-11-08: basic version
'''
import logging
import os
import time
from glob import glob
from multiprocessing import Pool
import pandas as pd
from satpy import Scene
# Choose the following line for info or debugging:
logging.basicConfig(level=logging.INFO)
# logging.basicConfig(level=logging.DEBUG)
logging.getLogger('satpy').setLevel(logging.ERROR)
num_pool = 8
sdate = '2019-06-01'
edate = '2019-08-31'
s5p_dir = '../data/tropomi/'
save_dir = '../data/tropomi_crf/'
req_dates = pd.date_range(start=sdate, end=edate, freq='D')
def load_s5p(f_s5p):
logging.debug(' '*4+f'Reading {f_s5p} ...')
scn = Scene([f_s5p], reader='tropomi_l2')
#vnames = ['latitude', 'longitude', 'cloud_radiance_fraction_nitrogendioxide_window', 'cloud_pressure_crb', 'solar_zenith_angle']
vnames = ['cloud_radiance_fraction_nitrogendioxide_window', 'cloud_pressure_crb', 'solar_zenith_angle']
logging.debug(' '*4 + f'Reading vnames: {vnames}')
scn.load(vnames)
# pick crf >= 0.7
ds = scn.to_xarray_dataset()
ds = ds.where(scn['cloud_radiance_fraction_nitrogendioxide_window']>=0.7, drop=True)
# stack and filter again
ds = ds.stack(z=['y', 'x'])
ds = ds.where((ds['cloud_radiance_fraction_nitrogendioxide_window']>=0.7)&(ds['solar_zenith_angle']<80)&(ds['latitude']>0), drop=True)
return ds.drop_vars(['crs', 'y', 'x', 'z']).to_dataframe()
def save_data(df, filename):
output_file = os.path.join(save_dir,
os.path.basename(filename)[20:26],
os.path.basename(filename)[:-19]+'.csv'
)
if not os.path.isdir(save_dir+os.path.basename(filename)[20:26]):
os.makedirs(save_dir+os.path.basename(filename)[20:26])
logging.info(f'Saving to {output_file}')
df.to_csv(output_file, index=False)
def process_tropomi(filename):
df = load_s5p(filename)
save_data(df, filename)
def main():
# get all filenames based on requested date range
pattern = os.path.join(s5p_dir, '{}{:02}', 'S5P_*_L2__NO2____{}{:02}{:02}T*')
filelist = sum([glob(pattern.format(date.year, date.month, date.year, date.month, date.day)) for date in req_dates], [])
# for filename in filelist:
# process_tropomi(filename)
# break
start_time = time.time()
# multiprocessing
pool = Pool(num_pool)
pool.map(process_tropomi, filelist)
print("--- %s seconds ---" % (time.time() - start_time))
pool.close()
if __name__ == '__main__':
main()