-
Notifications
You must be signed in to change notification settings - Fork 18
/
Test_reconstruct_DMB_numberadjust_FGADR.py
executable file
·171 lines (127 loc) · 6.23 KB
/
Test_reconstruct_DMB_numberadjust_FGADR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--dataset_name', default='FGADR')
parser.add_argument('--img_name', default='0516.jpg')
parser.add_argument('--gpus')
args = parser.parse_args()
print(args)
import os
if args.gpus:
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus
print('CUDA_VISIBLE_DEVICES:', os.environ["CUDA_VISIBLE_DEVICES"])
import keras.backend as K
import tensorflow as tf
import Net
import numpy as np
import StyleFeature
import scipy.io as sio
import cv2
from DMB_fragment import rebuild_AMaps_by_img
import pickle
import random
import yaml
from Opts import save_images, matTonpy
# =============================== path set =============================================== #
out_dir = args.dataset_name + '_NumberAdjust_' + args.img_name
load_model = args.dataset_name
db_dataset = args.dataset_name
real_img_dataset = args.dataset_name # 'DRIVE'
real_img_test_dataset = args.dataset_name # 'DRIVE'
result_dir = 'Test' + '/' + out_dir + ''
model_directory = 'Model_and_Result' + '/' + load_model + '/models' # Directory to restore trained model from.
if tf.gfile.Exists(result_dir):
print('Result dir exists! Press Enter to OVERRIDE...', end='')
input()
tf.gfile.DeleteRecursively(result_dir)
if not os.path.exists(result_dir):
os.makedirs(result_dir)
os.system('cp {} {}'.format(__file__, result_dir))
# ============================== parameters set ========================================== #
max_epoch = 20
img_channel = 3
img_size = 512
img_x = 512
img_y = 512
gt_channel = 1
z_size = 400
# =============================== model and data definition ================================ #
generator = Net.generator
tf.reset_default_graph()
gt = tf.placeholder(shape=[None, img_size, img_size, gt_channel], dtype=tf.float32)
img = tf.placeholder(shape=[None, img_size, img_size, img_channel], dtype=tf.float32)
mask = tf.placeholder(shape=[None, img_size, img_size, 1], dtype=tf.float32)
z = tf.placeholder(shape=[None, z_size], dtype=tf.float32)
# gt_mask = tf.concat([gt, mask], 3)
img_detector = StyleFeature.get_style_model(img, mask, with_feature_mask_from=('dense_2', []))
act_input = {
size: tf.image.resize_images((img_detector.get_layer(layer_name).related_projection.output - mean)/std, [size,size])
for layer_name, size, mean, std in zip(StyleFeature.STYLE_LAYERS,
StyleFeature.STYLE_LAYERS_SIZE,
StyleFeature.STYLE_LAYERS_MEAN,
StyleFeature.STYLE_LAYERS_STD)
}
syn = generator(gt, act_input, z)
# =============================== init ============================================= #
t_vars = tf.trainable_variables()
g_vars = list(set(t_vars) & set(tf.global_variables('generator')))
init = tf.variables_initializer(g_vars)
sess = K.get_session()
saver = tf.train.Saver(g_vars, max_to_keep=None)
sess.run(init)
#writer = tf.train.SummaryWriter(model_directory, sess.graph)
# ==================================== restore weights ================================ #
ckpt = tf.train.get_checkpoint_state(model_directory)
restore_path = ckpt.model_checkpoint_path.replace('-9000', '-9000')
print(restore_path)
saver.restore(sess, restore_path)
# ==================================== start training ===================================== #
if real_img_test_dataset in ['FGADR', 'retinal-lesions', 'IDRiD']:
# img_sample = np.load('data/{}_test_image.npy'.format(real_img_test_dataset))
gt_sample = np.load('data/{}_test_gt.npy'.format(real_img_test_dataset))[..., [0]]
mask_sample = np.load('data/{}_test_mask.npy'.format(real_img_test_dataset))
elif real_img_test_dataset == 'DRIVE':
img_sample, gt_sample, mask_sample = Net.matTonpy_35()
# img_sample = (np.reshape(img_sample, [-1, img_x, img_y, img_channel]) - 0.5) * 2.0
gt_sample = (np.reshape(gt_sample, [-1, img_x, img_y, gt_channel]) - 0.5) * 2.0
mask_sample = (np.reshape(mask_sample, [-1, img_x, img_y, 1]) - 0.5) * 2.0
per_part = 250
part_id = -1
with open('data/'+real_img_test_dataset+'_test.list', 'r') as f:
fname_list = yaml.safe_load(f)
# amaps = rebuild_AMaps_by_img(0, fragments_DB)
# generate images with fragmentDB
for epoch in range(max_epoch+16):
print('epoch:', epoch)
batchNum = 1
if True: # for i, (gt_array, mask_array) in enumerate(zip(gt_sample, mask_sample)):
i = fname_list.index(args.img_name)
i, (gt_array, mask_array) = i, (gt_sample[i], mask_sample[i])
print('img:', batchNum)
if i//per_part != part_id:
part_id = i//per_part
with open('DMB/{}.by_img.{}'.format(db_dataset, part_id), 'rb') as file:
fragments_DB = pickle.load(file)
zs = np.random.normal(0, 0.001, size=[1, z_size]).astype(np.float32)
if epoch <= max_epoch:
amaps, lesion_map = rebuild_AMaps_by_img(i, fragments_DB, lesion_map=True, quantity=epoch/max_epoch)
else:
amaps, lesion_map = rebuild_AMaps_by_img(i, fragments_DB, randomize=True, lesion_map=True, multiple=epoch-max_epoch+1)
syn_array = sess.run(syn, feed_dict={gt: [gt_array], z:zs, mask: [mask_array],
act_input[256]: [amaps[256]],
act_input[64]: [amaps[64]]})
syn_array = (syn_array + 1) / 2
syn_sample_m = syn_array * ((mask_array + 1) / 2)
syn_sample_m = np.reshape(syn_sample_m, [img_x, img_y, img_channel])
save_images(np.reshape(syn_sample_m, [1, img_x, img_y, img_channel]),
[1, 1],
result_dir + '/{}_{}.jpg'.format(fname_list[i], epoch))
lesion_map = cv2.resize(lesion_map, (512, 512), interpolation=cv2.INTER_NEAREST)
lesion_map = lesion_map * ((mask_array + 1) / 2) # crop by mask
_, binary = cv2.threshold((((mask_array + 1) / 2) * 255).astype('uint8'), 0, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
lesion_map = cv2.drawContours(lesion_map, contours, -1, (255, 255, 255))
cv2.imwrite(result_dir + '/{}_{}_lesion_map.jpg'.format(fname_list[i], epoch),
lesion_map)
batchNum += 1
sess.close()